aksa POWER GENERATION

Standby 1000 kVA **ℝ∨**∧∫≨≥| Ц∮| :√~::∮≥| ∽:~√∮.:.«∪∨

APD 1000 C

R∞VL√~|∫≦ Cummins ווֹ ≦ר וּיָּל יאָ אַראָ: Aksa אי::ר ווֹע ∽.:√∝] ∮ ∨≫

P 732 ::∨::~ ∬√ ∽.::√∝ ∮ ∨≫

WAKSA POWER DIESEL

ISO8528 ℝ√∮∮ √≫Ц∮| :√~::∮ √≫L:∽.:.√ :...:↓ U-∨ :.:∞√∮ √∮ √ ∽:::∞∮| ∮ .::∬MSO 8529 SZUTEST ℝν∮∮√≫Ц∮|:√~::∮√≫∟:∽...√:::::↓ ሁ~∨:::∞√∮√∨:::∧∠ν∮√:::Ц√:∮∴~:| ∝:∞√∮∨∩ MSO 9001

CE ℝ٧∮∮√≫Ц∮|:√~::∮√≫L:∽.:√:::::~~~q ~:∽∞~q ~:; :~~≅ ∨U/~√∬→≥

2000/14/EC ∈∽∬∴∨∧:∫≫≌∨.∳∮≥| :∞:∩:∽∞√ ^/≡ ∨∳ :∩L:∽::≥ ~| :∻∨:∽≪~:≫::⊔Ĺ √:∳.:⊇∞:...| ∩:↓∨∭∳ .:∭√∬ ...≠ ∽∬∽ 2000/14/⊻⊢>

∂√∧√3 ⇔≌∣∮∪∨, 50 ⊫≌, 0,8 PF

	∢⊢∧∣:⊶∮√≯	⊳∬∴≡∳∴∷∻≦	₩:∮.:°∮√≫∬::≡∮.:::~≦		
« #√∵:≫ ∦ ∮ ^	<u> いれい</u>	Uĝ∼	U <u>îî</u>	Uĝ∼	Amp
400/230	1000,00	800,00	920,00	736,00	1329,00

┥┥:┉√≫∬∴≡∳.:::~≦ 宜:| ヘ| :@f :.ʃʃ:| || ヾʃʃ| (ESP) :√<:~≥ ∞:::...~q ~:~∞∨∨::ISO 8528 :1 :| L:∽∧∪√∮| ∠::.</

⇔,:≡∮.:::≤∞.::∮.:∞∮.:∬ :||| ∨∬| (PRP): :√α::~√∞∠∫ ∨┤∫≨.:∬ :||| ∨∬| :::∨ :† :| ∬|∮∮.:∩∳√L:∽∧Ų, 24 ≒√::√∞::∽-∪∕∞:::L~aq ~:~∞∨∨::ISO 8528, ∠::∨::∽∨∬√.:† :| L:∞∧∪√∞10% ∞⊣≒∮∨| 1 ≒.√12 ≒∞::::~aq ~:~∞∨∨::ISO 3046. ₩:∮::¤∮√≫∬::≡∮:::+≦:

Standard Specifications 0

Heavy duty, water cooled diesel engine Radiator with mechanical fan Protective grille for fan and rotating parts Electric starter and charge alternator Starting battery (with lead acid) including rack and cables Engine jacket water heater Steel base frame and anti-vibration isolators Fuel tank under the base frame Flexible fuel connection hoses Single bearing, class H alternator Industrial exhaust silencer and steel bellows supplied separately Static battery charger Manual for application and installation

∄≥∝.::∠::::∫∮∨┤∫≨≥≈.::≌∨∩ O

ℝ∄∭⊫ŵ+⋈+₩∏

- ĝ≥∮.::∮::∩ :√∠∨√~:::
- $\partial \vee j \leq \cdots \vee j | \phi \vee \gg \infty : \angle \phi : \cap \cong : \sqrt{\cup} \vee \vee \cdots \sim \cdots : \int \vee \infty \sqrt{\partial} \nabla f = 0$
- +++.·∠.·L:| ∞ ∬√:∫ √

ALTERNATOR

();;;;v√:≥ - ☆∞~:.∬√~~≒ :!/≫::'.:┤ ∬√ .::∠U/≒∪^ ~...∫ ∨∞∕

- ℝ√~≒v∪v ∽∷∞∮≫~....j v∞v
- ⊫{ ∽≠ ∨~| ∫ ≦
- ↔ ≈ ↔:∬:∫ | ∪(.... ┤ ≈ ∽≈:∠o)
- +.:• ~:::∫ ≦ ~:..V ^√:≫∠UV

-シୣୗ-⋈-╘⊌ŧ+シ漁 ∀ŧн⋈-≜≜∄+シ_⊌ҟ+¦ୗ≯

- $\begin{array}{c} \cdot \cdot \sqrt{\beta} \mid \int \leq \angle v \colon \cdot \sqrt{\beta} \cong \vee \cdot \frac{1}{\beta} \delta \stackrel{\text{\tiny (L)}}{\longrightarrow} \cdots \swarrow \sqrt{\alpha} \mid \delta \stackrel{\text{\tiny (N)}}{\longrightarrow} \sqrt{\beta} \delta \stackrel{\text{\tiny (L)}}{\longrightarrow} \sqrt{\beta} \delta \stackrel{\text{\tiny (L)$
- ⇔∞≫∧√∮∮.:::~∨ √∬:;| :∬| ~:

TRANSFER SWITCH

- ↔▷:∨ √] ∨ ≒ ~≥ :| …J≪:√ U:∳ ~/∪...√ - ↔▷:∨ √] ∨ ≒ ~≥ :| …J≪:∲ ≥∩∠∞∨L√⊣J≦ :√∝..~/| ~∞≥ U ≪≒√⊣J≦

APD 1000 C

ात्त∞∨L√⊣∫≦ Cummins ग्री≦⊣:∳√~∴:Aksa -⊳∨::-|∬√ P 7 ∽∵:√∞∫|∳ ∨≫

P 732 ::V::~| ∬√∽.:.√∝∫ |∮ ∨≫

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \[
 \]
 \[
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \[
 \]
 \[
 \[
 \[
 \]
 \[
 \[
 \]
 \[
 \[
 \]
 \[

WAKSA POWER DIESEL

Standby 1000 kVA

● | ↓:√∪┤ : ∨::~VUV ∠∨∧∫ ≨ ≥≈∠∞Vu√-/ ∫ | ∩

Manufacturer		Cummins
Model		KTA 38-G2A
		1500 .:∝/ʃʃ \∳.
↔>√U:∿∬√∫≦∮√≫∠::::∫∮∨┤∫≦∮√≫∬∴≡∮:::∵≦		895,00 나 <u>?</u> ~ [1200,00HP]
«»»:∫:╢│∮╰┦≌╰∫╰∳∠:::∞	L	38,000
⋉∨√∭ ~: ∨ ≈:∠ ::::≠ ∮≫	ʃʃ ʃ.	159 X 159
→┤ :!∮≦:║ √~∨≫		14,5:1
«#∴∬ ٧∮ √∫ ≨∮ ≥ ∴≪∴∴~≥(∴≪/∬ ٧∮)	∴∝/∬∨∳.	1500
ש∭ע:::י≦ ∬√: ן ∖ (+»)	L	114,00
#>∝≤ ∬ ∴≉∫ √∥ ∠√≪≡ ∩∥ ∨∠∪∵:~∨	L	280,00
AbsorbedAirDischargeReSourceKey.Text	∬3/∬∨∳.	67,56
∰:v?.b∮ √≫::in∳ .::~≦∞:^∠c≠ ∮ :L: :√∠∨√~.:.√ (∬3/∬√∮.)	∬3/∬\∳.	1500,00
⇔:v?以√≫::::	∬3/∬∨∳.	193,50
ᡧᢔ᠋᠋ᡗ᠋:ᡰ᠄ᠠ᠆ᢦ᠈:ᠠᢁ≥╡᠁ᠨ	°C	536,00
∑[└~:∨╡:レᠠ≫:ᄵ:רן∬√		24 V d.c.
	Load	∵:∨100% ∵:∨75% ∵:∨50%
←√: ≈: ∠ ~:f v∞√	+*/≒√::	M-:004 M-:004 M-:004
		191,00 147,00 98,00

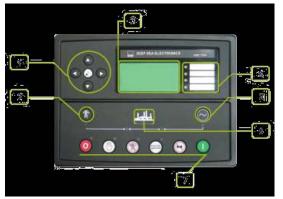
● ↔≫∵√∫ ≦~| :∳ √~∴.√

⇔∷.∨∧∞:∠∨~ ∫≦		Aksa
⇔:∠ ∫≦		AK7740
⊽√::-:√	Hz	50
⇔∴≡∮ ∷: ≻≦	U <u>î î</u>	925,00
Cos∂		0,80
<+;∫∨≒ ;;∞;≊ √∧		3
<₩√∵:≫╢│∮╰┦ √Ĵ≦┤:∮√~:.:√(ĝ)	î	400/230
4-8: . U	Α	1337,00

● <-√^∬| :> ∨ ¤| ::

.:~∪:≥~√≫	<u> </u>	⊼∫ ∿∮ √(∬∬.)	∈∨:v∳√	∞≥:::.~√(∬∬.)	עליגי~≦ ~ייין אי ∳ ידיי «עע
L:∽.:.√	U_	۵۵.	۵۵.	""	L
APD 1000 C	7950,00	4370,00	2060,00	2400,00	900,00
⊫⇒:∽?.∹≥ ::	<u> </u>	⊼∫ ∨∮ √(∬∬)	∈∨:v∳√	∞≥:::.~√(∬∬.)	`V
U:∥ ∞≈∷∭	U_	IJIJ.	IJIJ.	""	L
AK 96	11500.00	7500	2300	2500	1900

aksa POWER GENERATION



R∞VL√~|∫≦ Cummins ווֹן ≦רן :∳ √~..:Aksa →∨::רן ווֹע P 732 ::∨::~ ∬√∽.:.√∝ | ∮ ∨≫ ∽.:√∞j |∮ ∨≫

Standby 1000 kVA <u>▼∨∧∫≦</u>≥| Ц∮| :√~::∮≥| ∽:~√∮.:≪∪∨

WAKSA POWER DIESEL

P 732 ::V:≻ ∭√∽.::√∞ | ∳ V≫- →V:≻ ∭√∽.::√∞ | ∳ V≫

- 1 ↔∮ ...:∪∨∳ √∞∨∟√≌∨∨ ∬|∮≪
- 2 ++∮ .:::₩ :| :| ∞:∠√ :| ~∨
- 3 $\mathbb{k}\sqrt{\neg} = \mathbb{k} \cup \mathbb{k} \land \mathbb{k$
- 4 →∞q ~:∠∨:∠∳ √≫::∨L∳ √∫ ∨∧√≌∨≫
- 5 ↔∮Ų ∞≥Ų ≪≒∮ ∨≫Ц∮| :√~...√
- 6 ::¤| ~:'∠∨:'∠∮ ≥∩ v∮ ∠∨∪√~:'.:
- 7 $\longleftrightarrow \cdots \cup \sim \simeq \simeq \cdots \lor \cdots = : \sqrt{\cong} \lor \lor$

«);∨∝..≥ 0

"DSE, ∬.:∠|∫≦7320, ∝∫.:.∪∽.::√∞|∮∨≫::∨::~|∬≥≩∮|:L::∳√~||∮∨≫ $\underset{\mathsf{A}}{\longrightarrow} \mathcal{A} := \mathcal{A} :=$

.:¤| ::+| ≒∨∞v| ~∠;∫ L:¤| ≒∫ :+| :::∪:≥~v|. ह∫≫∫ | LU:L:∠:::~∽.√∪∠| ~√∫≫∬ ∽:~:.∩:~∞√ ∨:...∫≦∧∽| ~:≫ ∧√∪:≥∞√∭√≫∠∝ :≦

O

 $\underbrace{ \overset{(*)}{\Rightarrow}}_{(*)} \underbrace{ \overset$ #₩∮ √∮ √≈:∠∨~;≫∮ √::√∬::∩Ц∮| :√~::∳ :´∩ ∽; ∹√∮ ::≪↓.

 $\oint | \ \vee \vdots \cdots \lor \lor \oint \land \vdots : : \sim \lor \oint \checkmark \textcircled{1} \leftrightarrow \angle \lor : : : \oiint | \ : | \ : | \ \angle \oint | \ \cap : \cdot \lor \oiint \Big| \int \lor.$

→~v∮∠√:~∮≥| :::|≌v≅ ∨∪V≌∨∨

 $\begin{array}{c} \leftrightarrow \forall \cup \cdots \cdots \stackrel{\prime = 1}{\longrightarrow} \stackrel{\prime = 1}{\longrightarrow}$ ∞:| ∬|∮∨,∞| ≡|∮∨| ..∞≥...;∮≫| ∬≥≈∠| ∩t:~∞∨≫≈;

APD 1000 C

R∞VLV~∫≦ Cummins ווֹ ≦רן :ןּ ּ√~∴:Aksa ->∨::רן ווֹע ∽.:√∞j |∮ ∨≫

Standby 1000 kVA ℝ∨∧∫≦≥|Ц∮|:√~∴∳≥|∽:~√∮∴∞∪∨

WAKSA POWER DIESEL

↓↑∧∭ :∨┤∫≨≥| ∵:∨∝∴:≥

 $\begin{array}{l} \mathbb{R} \otimes V_{\Delta} / \neg \int \leq \\ \neg \cup \dots \vdots \sim \leq \angle \otimes V_{\Delta} / \neg \int \gg \\ \mathbb{R} \sqrt{\alpha} \int \phi & \dots \angle \sqrt{=} \vee \iint \sqrt{1} \sqrt{1} \\ \end{array}$ ⊽√::~:~√ «+»:·U ∧√∧| ∭ |∮ ∨≫ Uĝ ÷≣ ∪_____:≒ Ůů =, Ůů =, Ůů =, Ůů = : = ⇔.::∫ ∠.∞√⊣∫ ≦ .::-≦≅ √∧ ↓Ď = .::∬√≌∨.:∳∮ √≫::∀::⊣∬√ ₩√∵:≫| [∮ </ (L-L, L-N) **∇**√::~:~v

☆≥↓ ≪≒∮ ↓ … ∨ ∞≥:::.∪:∩ ↓ ∬:. ↓ :√~~: ∬√:∫ √ ∄≥√ ≪≒∮ √ …∨∮ ∨∧∪.∬ ∽…∞∮│ ~…∫ ∨∞√ $\overrightarrow{\texttt{H}} \cdots \overrightarrow{\texttt{M}} \equiv \left| \oint \mathsf{V} \right| \cdots \overrightarrow{\texttt{V}} \oint \mathsf{V} \land \bigcup \cdots \overrightarrow{\texttt{J}} \mathrel{\backsim} \cdots \cdots \overrightarrow{\texttt{M}} \left| \quad \sim \cdots \overrightarrow{\texttt{J}} \mathrel{\lor} \mathsf{V} \propto \mathsf{V}$:|∫|∩∮≥∩∝∫.:∪(2157) ⇔.:∠∽∫≦∽.::√∞∫∣∮∨≫∞∞:∠:∬(2130)

0 (III): \ (III): \</

o ⊸⊳≈ ∬√ ∧√≡ ∨~≥ $\operatorname{top} (\cdot) = \operatorname{top} (\cdot) = \operatorname{t$

₩√∵:≫|∫∮∨| יייאן ו∳ אן װאָרייאן און איין װאָראָדאָן און איין װ $\mathsf{A} = \mathsf{V} \land \mathsf{U} \lor \mathsf{U} \land \mathsf{U} \: \mathsf{U} \:$ ⇔:|L:∽^ ₩°~:√•∮ √≫....;∫ | ∠..∞√~| ∫ ≦∮...:~≦ ≒ :| ∠..∞√∮ ∨≫≅ √^ $\begin{array}{c} (1) \quad (1) \quad$

∄∌↔↔∕∇⊻₩↓↑⊻ ₩|∨:..:√∞∮.::~≦.....↓ ۩಼∞√:∨∩∳√≫..::~\∯.....↓ #v,Uv∩∞:::a∮ ≦ ∬√:∫ √ ∄≥:::Uv≫ √ ∬:↑:↓ :√~∞:√ ∠∞vL√√ ∫ ≫ #v,Uv∩∞:::a∮ ≸ ≦::Ϡ √∥ ∠√≪≡| ∩∥ ∨∠U::.~v ↔):|L:∽∧ ⊨}∮|:√~..: ...∠∮√..:≫||∮∨|∬

O →~√∮∠√:~≥

∑[|∪-:∨╡:!//≫∝|∧...√:∮.::-≦/ ╡|∪-:..[[√|∳ ∧⊸∮ √≫ BS ĔN 60950 ≩ | ୦-: ୰≒ : ଯମ ଫାରେଡେମ୍ବେ ∳ ମ .:∝.::∽∠.:∞v∮ V BS EN 61000-6-2 .::∮ .:.∞∮ ≥| ::~√∮ ∠√:~≥ $\mathsf{BS'EN}\ 61000-6-4\ \overleftarrow{\Sigma} \leftrightarrow \to \overleftarrow{\vdots} \sim \sqrt{\phi}\ \angle \sqrt{:} \sim \ge \phi\ \sqrt{\infty} \ge \propto : :: \ge$ ∧√L:≫∧∮ ≫≪≡ ∨≈ ∞q ≡|::~∞

∨ ∨∧[[|∮|∮ ∨≫ ∵∶] ≫;∮ ∷ ;~∨. _]ĵ∮ ∠ ∨∪√≌∨≫ ∧√ ;≫∠∮ ∶.L :. ∨ ∵∨? ∪:∞:L :. ~:.∪/.

	AKSA POWER GENERATION		Standby 1000 kVA ℝ∨۸∫≨≥ Ц∮ :√~::∳≥ ∽:-√∳.:@JV
	APD 1000 C	⊼∞vL√⊣∫≦ Cummins 1〕≦न :∮ √~::Aksa ->∨::न ∬√ P 732 ∽::√∞∫ ∮ ∨≫	::V::- ∬√ ∽:::√∞] ∮ V≫
0	AK 96 - U: v=	1 2 3 4 5 6 7 8 9 10 10 11 12	Steel structure made from steel sheet and steel profiles. canopy and panels made from powder coated sheet steel. Emergency stop push button. Control panel is mounted on the baseframe . Located at the back of the Corrosion-resistant locks and hinges. oil could be drained via valve and a hose Exhaust system in the canopy. special large access doors for easy maintanance Fuel tank is at front of the canopy ,easy access to the fuel tank via Lofkable congr similar to ISO container , located on each top corner of the capped of the canopy provides easy access to radiator cap.
0	$\begin{array}{c} \underbrace{\left(\left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \\ \left(\left(\right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\right) \right) \right) \\ \left(\left(\left(\left(\left(\right) \right) \right) \right) \\ \left($:¦ ∝∞v\$ v≫∬ v	sound proofing materials Integrated ladder built in to side of the canopy allows access to the top $\cdots \otimes f_{1}^{he} \bigotimes_{2} \bigotimes_{2} \bigotimes_{1} f_{1} : \sqrt{\cdots} : f_{2} \ge \infty : \cdots \sqrt{-1} : \cdots : f_{2} \ge \infty : \cdots \sqrt{-1} : \cdots : f_{2} \ge \infty : \cdots \sqrt{-1} : \cdots : f_{2} \ge \infty : \cdots \sqrt{-1} : \cdots : f_{2} \ge \infty : \cdots \times f_{2} \ge \infty : \cdots : f_{2} \ge \ldots : \cdots : \cdots : \cdots : \cdots : \ldots : f_{2} \ge \ldots : \cdots : f_{2} \ge \ldots : \cdots : f_{2} \ge \ldots : f$
	$\begin{array}{c} \left(\left\ \begin{array}{c} \left\ \left\ \begin{array}{c} \left\ \right\ \right\ \right\ \right\ \right\ \\ \left\ $	UV, ∞≥≈f∮ √≫:.∨::+ ∬√`·:: 4 ~√∫ ≦∝ :√∝~√∮ √≠ U:∞i ∫∝; ∫ c∦ ∨∞v∳ ∨≫ ∫ .:≥∞√≪≡ ∩: ≫∠∝q :∨ √≈:∠∨~:≫::∞∮ ≠ ∮ ∩ :~∳	≥ U∽√

- $\begin{array}{l} \underset{i=1}{\overset{\circ}{\longrightarrow}} \underbrace{(i)}_{i=1} \underbrace{(i)}_{$

€v:\∳√	۵Ŋ.	2300
▼∫ \∳ √(∬∬.)	۵.	7500
∞≥:::.~√(∭∬.)	۵.	2500
שוןןע:::-≦~ן עסן :L:. ∝\U\	L	1900